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NUMERICAL STUDY OF NAVIER–STOKES EQUATIONS

UDC 519.632.4S. D. Algazin

The problem of a viscous incompressible fluid flow around a body of revolution at incidence, which
is described by Navier–Stokes equations, is considered. For low Reynolds numbers, the solutions
of these equations are smooth functions. A numerical algorithm without saturation is constructed,
which responds to solution smoothness. The calculations are performed on grids consisting of 900
(10 × 10 × 9) and 700 (10 × 10 × 7) nodes. On the grid consisting of 900 nodes, a system of 3600
nonlinear equations is solved by a standard code. The pressures on the shaded side of the body of
revolution are compared. It is found that a numerical study (on this grid) is feasible for problems
with Re ≈ 1. For high Reynolds numbers, the number of grid nodes has to be increased.
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Introduction. Stokes equations were considered earlier in [1]. In the present paper, those results are
extended to Navier–Stokes equations. Full nonlinear Navier–Stokes equations (for an incompressible viscous fluid)
in the exterior of a body of revolution are considered for the case with an arbitrary direction of the flow velocity
vector with respect to the axis of revolution:

μΔu− ρu · ∇u−∇p = 0, x ∈ R
3 \ Ω,

∇ · u = 0.
(1)

Here u(x) is the velocity of the incompressible fluid, p(x) is the pressure, μ and ρ are the fluid viscosity and density,
and Ω is the domain under consideration. Equations (1) are defined in the exterior of the domain Ω.

The system of differential equations (1) is supplemented by the boundary conditions

|x| → ∞: u→ u∞,

u
∣
∣
∣
∂Ω

= 0;
(2)

|x| → ∞: p→ p∞ (3)

(∂Ω is the boundary of the domain Ω).
The problem usually considered in the literature is problem (1), (2). In this case, the solution is not unique

(the value of p is determined with accuracy to a constant). Therefore, problem (1)–(3) is considered below, i.e., the
pressure at infinity is assumed to be constant and independent of x.

Using some physically feasible assumptions, Leray established the existence of rigorous solutions of the
interior problem and the exterior problem with u∞ = 0 [2]. In the case of the exterior problem with u∞ �= 0, the
solution satisfies (1), (2); instead of the first relation in (2), however, weaker conditions

∫

R

|∇u|2 dx <∞,

∫

R

|u(y) − u∞|2
|x− y|2 dy � K <∞
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with a constant K independent of x are satisfied. Finn [3] proved that Leray’s solution also satisfies the condition
at infinity in the case u∞ �= 0.

Other possible proofs were proposed in [4, 5]. Note that the system of Navier–Stokes equations is elliptical
by definition given by Douglis and Nirenberg [6]; hence, u and p are known to be smooth to a certain extent.

There are many publications dealing with numerical solutions of Navier–Stokes equations. The closest paper
to the present one is that published by Babenko et al. [7] who considered a two-dimensional problem on a viscous
incompressible fluid flow around a cylinder. The boundary conditions at infinity were shifted to a large-diameter
circumference, and a time-dependent method was used to solve nonlinear equations resulting from discretization.
Note that this method does not provide convergence to the solution of the exterior problem as the radius of the
outer circumference R increases. In the exterior of the circle, the Laplace operator entering the Navier–Stokes
equations has a continuous spectrum filling the interval (−∞, 0). The calculations produce a discrete spectrum,
but the eigenvalues of the corresponding matrix (matrix of the discrete Laplace operator) have two condensation
points: 0 and −∞. Thus, the norm of the matrix of the discrete Laplace operator has a high value (as well as the
norm of the inverse matrix). As a result, the time-dependent method is unstable in the limit as R → ∞.

The method most frequently used to solve Navier–Stokes equations is the finite-element method (see, e.g.,
[8] and the references therein). The greatest difficulty in using the finite-element method is the necessity of solving
a large number of nonlinear equations. An alternative to the finite-element method, namely, discretization without
saturation [9], is used in the present work. The point is that the solutions of Navier–Stokes equations for low
Reynolds numbers are smooth functions, and one has to use this circumstance, i.e., to construct an algorithm
responding to solution smoothness [9]. As a result, a three-dimensional problem on the flow around a body of
revolution at incidence can be numerically studied on a grid consisting of 900 = 10 × 10 × 9 nodes. The resultant
system of 3600 nonlinear equations is solved by applying a standard code [10].

1. Formulation of the Problem. Full steady-state Navier–Stokes equations are considered in the exterior
of a body of revolution Ω. These equations have the form [11]

u1 ∂u
1

∂x1
+ u2 ∂u

1

∂x2
+ u3 ∂u

1

∂x3
= − ∂p

∂x1
+

1
Re

∇2u1,

u1 ∂u
2

∂x1
+ u2 ∂u

2

∂x2
+ u3 ∂u

2

∂x3
= − ∂p

∂x2
+

1
Re

∇2u2,

u1 ∂u
3

∂x1
+ u2 ∂u

3

∂x2
+ u3 ∂u

3

∂x3
= − ∂p

∂x3
+

1
Re

∇2u3,

(1.1)

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0.

Here (u1, u2, u3) is the velocity vector, ui (i = 1, 2, 3) are the projections of the velocity vector onto the axes of the
Cartesian coordinate system (x1, x2, x3), and ∇2 is the Laplace operator.

System (1.1) has to be supplemented by the boundary conditions for ui (i = 1, 2, 3) and the pressure p.
In system (1.1), we use the following dimensionless quantities (the bar is omitted): xi = x̄i/La, ui = ūi/u∞,

p = (p̄ − p∞)/(ρv2
∞), and 1/Re = ν/(Lau∞) (La is the characteristic linear size, u∞ is the absolute value of flow

velocity at infinity, p∞ is the pressure at infinity, ν is the viscosity, and Re is the Reynolds number).
Thus, to determine the flow parameters, velocity vector (u1, u2, u3), and pressure p, we need to solve system

(1.1) subjected to the following boundary conditions:

ui
∣
∣
∣
∂Ω

= 0, ui
∣
∣
∣
∞

= ui
∞, i = 1, 2, 3, p

∣
∣
∣
∞

= 0.

Here Ω is the domain occupied by the body under consideration, which is formed by means of rotation around the
x3 axis, ∂Ω is the boundary of the domain Ω, and ui

∞ (i = 1, 2, 3) is the fluid velocity in an undisturbed flow (at
infinity).

We introduce a system of curvilinear coordinates (r, θ, ϕ) related to the Cartesian coordinates (x1, x2, x3) by

x1 = V (r, θ) cosϕ, x2 = V (r, θ) sinϕ, x3 = U(r, θ). (1.2)
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The domain obtained in the meridional cross section of the body Ω is denoted by G. The functions U and V are
chosen in the following manner. Let ψ = ψ(z), ψ = U + iV , z = r exp (iθ) be a conformal mapping of the circle
|z| � 1 onto the exterior of the domain G, the center of the circle being mapped as an infinitely distant point (for
the conformal mapping to be unique, we require that the direction along the real axis at the zero point transform
to the same direction). Relations (1.2) define the image of a sphere of a unit radius onto the exterior of the body Ω.

For an ellipsoid of revolution around the x3 axis (x2
1/b

2 + x2
2/b

2 + x2
3/a

2 − 1 = 0), the functions U and V

are known in analytical form (see [12]). After mapping (1.2), the surface of a sphere of a unit radius transforms to
the body surface Ω. The boundary conditions specified on ∂Ω are thereby shifted to the sphere surface, while the
boundary conditions prescribed at infinity are shifted to the sphere center. Note that such mapping converts the
outward normal to the body into the inward normal. This fact is important to calculate the drag force (see below).

If curvilinear coordinates are used, the equations for vector quantities are normally written in projections
onto the axes of the own basis whose coordinate vectors are directed along the tangents to the coordinate lines.
This basis depends on the coordinates of the point in space. In our case, this approach is unreasonable, because
mapping (1.2) on the x3 axis is not unique (if V = 0, then ϕ can take arbitrary values), which is responsible for
solution singularities caused by using a “bad” coordinate system. Note that a spherical coordinate system has the
same drawback.

This situation can be resolved as follows. We retain the projections of the velocity vector ui (i = 1, 2, 3)
onto the axes of the Cartesian coordinate system as the sought functions and replace the independent variables x1,
x2, and x3 by r, θ, and ϕ by means of substitution (1.2). Then, the partial derivatives with respect to the
Cartesian coordinates xi (i = 1, 2, 3) are expressed via the derivatives with respect to r, θ, and ϕ [Φ(x1, x2, x3) =
Φ(V cosϕ, V sinϕ,U)]:

∂Φ
∂x1

= α cosϕ
∂Φ
∂r

+ β cosϕ
∂Φ
∂θ

− 1
V

sinϕ
∂Φ
∂ϕ

,

∂Φ
∂x2

= α sinϕ
∂Φ
∂r

+ β sinϕ
∂Φ
∂θ

+
1
V

cosϕ
∂Φ
∂ϕ

, (1.3)

∂Φ
∂x3

=
rV ′

θ

w2

∂Φ
∂r

− rV ′
r

w2

∂Φ
∂θ

.

Here α(r, θ) = −rU ′
θ/w

2, β(r, θ) = (1 + rU ′
θV

′
r/w

2)/V ′
θ , and w2 = U ′2

θ + V ′2
θ . As a result, we obtain

(

u1α cosϕ+ u2α sinϕ+ u3 rV
′
θ

w2

)∂u1

∂r
+

(

u1β cosϕ+ u2β sinϕ− u3 rV
′

r

w2

)∂u1

∂θ

+
(

− 1
V

sinϕu1 +
1
V

cosϕu2
)∂u1

∂ϕ
+

(

α cosϕ
∂p

∂r
+ β cosϕ

∂p

∂θ
− 1
V

sinϕ
∂p

∂ϕ

)

=
1

Re
∇2u1,

(

u1α cosϕ+ u2α sinϕ+ u3 rV
′
θ

w2

)∂u2

∂r
+

(

u1β cosϕ+ u2β sinϕ− u3 rV
′

r

w2

)∂u2

∂θ

+
(

− 1
V

sinϕu1 +
1
V

cosϕu2
)∂u3

∂ϕ
+

(

α sinϕ
∂p

∂r
+ β sinϕ

∂p

∂θ
+

1
V

cosϕ
∂p

∂ϕ

)

=
1

Re
∇2u2,

(

u1α cosϕ+ u2α sinϕ+ u3 rV
′
θ

w2

)∂u3

∂r
+

(

u1β cosϕ+ u2β sinϕ− u3 rV
′

r

w2

)∂u3

∂θ
(1.4)

+
(

− 1
V

sinϕu1 +
1
V

cosϕu2
)∂u3

∂ϕ
+

(rV ′
θ

w2

∂p

∂r
− rV ′

r

w2

∂p

∂θ

)

=
1

Re
∇2u3,

α cosϕ
∂u1

∂r
+ β cosϕ

∂u1

∂θ
− 1
V

sinϕ
∂u1

∂ϕ
+ α sinϕ

∂u2

∂r
+ β sinϕ

∂u2

∂θ
+

1
V

cosϕ
∂u2

∂ϕ
+
rV ′

θ

w2

∂u3

∂r
− rV ′

r

w2

∂u3

∂θ
= 0.
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Relations (1.4) can be brought to uniform equations for velocity by the replacement

ui = (1 − r)ui
∞ + ûi, ûi

∣
∣
∣
r=0

= ûi
∣
∣
∣
r=1

= 0,

∂ui

∂r
= −ui

∞ +
∂ûi

∂r
, Δui = Δûi − r

w2

(

1 + r
V ′

r

V

)

ui
∞, i = 1, 2, 3.

(1.5)

The sought functions ui are replaced by ûi (i = 1, 2, 3) with the use of Eq. (1.5) to obtain uniform boundary
conditions for velocity:

ûi
∣
∣
∣
r=0

= ûi
∣
∣
∣
r=1

= 0, i = 1, 2, 3. (1.6)

This is necessary for a more convenient discretization of the Laplacian. For the pressure, we have the boundary
condition

p
∣
∣
∣
r=0

= 0. (1.7)

The Laplacian of the functions ui (i = 1, 2, 3) in the variables r, θ, ϕ acquires the form

Δui =
r

V w2

[ ∂

∂r

(

rV
∂ui

∂r

)

+
∂

∂θ

(V

r

∂ui

∂θ

)]

+
1
V 2

∂2ui

∂ϕ2
. (1.8)

Thus, we have to solve Eqs. (1.4) and (1.5) in a sphere of a unit radius with the boundary conditions (1.6) and
(1.7).

2. Discrete Laplacian. For discretization of Laplacian (1.8) with uniform boundary conditions (1.6), we
use a technique described in [1]. The essence of this technique is as follows. In Laplacian (1.8), using the method
of separation of variables, one can reduce calculating the eigenvalues of a three-dimensional differential operator to
calculating the eigenvalues of two-dimensional differential operators. The discrete problem inherits these properties,
and discretization of a three-dimensional differential operator reduces to discretization of a series of two-dimensional
operators.

Thus, we obtain a discrete Laplacian in the form of an h-matrix:

H =
2
L

l∑

k=0

′
Λk ⊗ hk, L = 2l+ 1.

The prime here means that the term at k = 0 is taken with a coefficient equal to 1/2; the sign “⊗” denotes the
Kronecker product of matrices; h is a matrix of L× L size with the elements

hkij = cos k
2π(i− j)

L
(i, j = 1, 2, . . . , L);

Λk is the matrix of the discrete operator corresponding to the differential operator

r

V w2

[ ∂

∂r

(

rV
∂Φ
∂r

)

+
∂

∂θ

(V

r

∂Φ
∂θ

)]

− k2

V 2
Φ, k = 0, 1, . . . , l (2.1)

with the boundary conditions

Φ
∣
∣
∣
r=0

= Φ
∣
∣
∣
r=1

= 0. (2.2)

For discretization of the differential operator (2.1), (2.2), we choose a grid consisting of n nodes in terms of θ

θs =
π

2
(ys + 1)

(

ys = cos εs, εs =
(2s− 1)π

2n
, s = 1, 2, . . . , n

)

and use the interpolation formula

g(θ) =
n∑

s=1

Tn(y)gs

n(−1)s−1(y − ys)/ sin εs

[

=
1
π

(2θ − π), gs = g(θs), s = 1, 2, . . . , n, Tn(y) = cos (n arccos y)
]

.

(2.3)
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The first and second derivatives with respect to θ, which enter relations (2.1), are obtained by differentiating the
interpolation formula (2.3).

In terms of r, we choose a grid consisting of m nodes

rs =
1
2

(zs + 1)
(

zs = cosχs, χs =
(2s− 1)π

2m
, s = 1, 2, . . . ,m

)

and use the interpolation formula

q(r) =
m∑

s=1

Tm(r)(r − 1)rqs
m(−1)s−1(rs − 1)rs(z − zs)/ sinχs

[

qs = q(rs), z = 2r − 1
]

. (2.4)

The first and second derivatives with respect to r, which enter Eq. (2.1), are found by differentiating the interpolation
formula (2.4). By differentiating the interpolation formulas (2.3) and (2.4), we obtain the values of the derivatives
with respect to θ and r, which enter the left side of the continuity equation (1.8).

For discretization of the derivatives of pressure with respect to r, we use the interpolation formula

q(r) =
m∑

s=1

Tm(r)rqs
m(−1)s−1rs(z − zs)/ sinχs

, z = 2r − 1. (2.5)

The quantities entering Eq. (2.5) are defined above. The values of the first derivative of pressure with respect to r,
which enter the left side of relations (1.5)–(1.7), are obtained by differentiating the interpolation formula (2.5).

To construct a formula for numerical differentiation with respect to ϕ, we consider the interpolation formula

S(ϕ) =
2
L

2l∑

k=0

Dl(ϕ− ϕk)Sk, L = 2l+ 1, Sk = S(ϕk),

ϕk =
2πk
L

(k = 0, 1, . . . , 2l), Dl(ϕ− ϕk) =
1
2

+
l∑

j=1

cos j(ϕ− ϕk).
(2.6)

The values of the derivatives with respect to ϕ are determined by differentiating formula (2.6).
To derive discrete Navier–Stokes equations, we need to replace the derivatives in Eqs. (1.4) by discrete

derivatives found by differentiating the corresponding interpolation formulas (2.3)–(2.6); the Laplacian is replaced
by the matrix H . Instead of the functions u1, u2, u3, and p, discrete Stokes equations contain the values of these
functions in grid nodes (θν , rμ, ϕk), ν = 1, 2, . . . , n, μ = 1, 2, . . . ,m, and k = 0, 1, . . . , 2l.

As a result, we obtain a system of 4mnL nonlinear equations. The system of discrete equations in explicit
form is written below. For m = n = 10 and L = 9, for instance, the system contains 3600 equations.

Let us comment on the Laplacian discretization used. Interpolation of the solution by polynomials is applied.
It is known that such an interpolation responds to solution smoothness, and the greater the number of smoothness
conditions satisfied by the interpolation, the better the approximation of the interpolated function [9]. In this case,
one does not need to known the solution smoothness a priori. This is an essential feature of numerical algorithms
without saturation [9]. As was noted above, the solution in the problem under study consists of smooth functions.
Using this circumstance, one can construct an algorithm with acceptable accuracy on a sparse grid.

3. Discrete Navier–Stokes Equations. The following notation is introduced:

A(1) = A(1)(u1, u2, u3) = u1α cosϕ+ u2α sinϕ+ u3rV ′
θ/w

2,

A(2) = A(2)(u1, u2, u3) = u1β cosϕ+ u2β sinϕ− u3rV ′
r/w

2,

A(3) = A(3)(u1, u2, u3) = −(1/V ) sinϕu1 + (1/V ) cosϕu2.

The functions α and w2 are defined in (1.3). We use substitution (1.5) and introduce new notations:

Â(1) = Â(1)(u1, u2, u3) = (1 − r)u1
∞α cosϕ+ (1 − r)u2

∞α sinϕ+ (1 − r)u3
∞rV

′
θ/w

2

+ û1α cosϕ+ û2α sinϕ+ û3rV ′
θ/w

2,

Â(2) = Â(2)(u1, u2, u3) = (1 − r)u1
∞β cosϕ+ (1 − r)u2

∞β sinϕ− (1 − r)u3
∞rV

′
r/w

2

+ û1β cosϕ+ û2β sinϕ− û3rV ′
r/w

2,
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Â(3) = Â(3)(u1, u2, u3) = −(1/V ) sinϕ(1 − r)u1
∞ + (1/V ) cosϕ(1 − r)u2

∞

− (1/V ) sinϕ û1 + (1/V ) cosϕ û2.

We use θν , rμ, ϕk (ν = 1, 2, . . . , n; μ = 1, 2, . . . ,m; k = 0, 1, . . . , 2l, L = 2l + 1) to denote the values of the
variables θ, r, and ϕ in grid nodes. Then, Eqs. (1.4) yield discrete Navier–Stokes equations:

Â
(1)
νμk

(

− u1
∞ +

m∑

μ1=1

D(r)
μμ1

û1
νμ1k

)

+ Â
(2)
νμk

( n∑

ν1=1

D(θ)
νν1
û1

ν1μk

)

+ Â
(3)
νμk

( 2l∑

k1=0

D
(ϕ)
kk1
û1

νμk1

)

+ αμν cosϕk

( m∑

μ1=1

D(pr)
μμ1

pνμ1k

)

+ βμν cosϕk

( n∑

ν1=1

D(θ)
νν1
pν1μk

)

− 1
Vμν

sinϕk

( 2l∑

k1=0

D
(ϕ)
kk1

pνμk1

)

− 1
Re

( n∑

ν1=1

m∑

μ1=1

2l∑

k1=0

Hνμk,ν1μ1k1 û
1
ν1μ1k1

− r

w2

(

1 + r
V ′

r

V

)∣
∣
∣ r=rμ

θ=θν

u1
∞

)

,

Â
(1)
νμk

(

− u2
∞ +

m∑

μ1=1

D(r)
μμ1

û2
νμ1k

)

+ Â
(2)
νμk

( n∑

ν1=1

D(θ)
νν1
û2

ν1μk

)

+ Â
(3)
νμk

( 2l∑

k1=0

D
(ϕ)
kk1
û2

νμk1

)

+ αμν sinϕk

( m∑

μ1=1

D(pr)
μμ1

pνμ1k

)

+ βμν sinϕk

( n∑

ν1=1

D(θ)
νν1
pν1μk

)

+
1
Vμν

cosϕk

( 2l∑

k1=0

D
(ϕ)
kk1
pνμk1

)

− 1
Re

( n∑

ν1=1

m∑

μ1=1

2l∑

k1=0

Hνμk,ν1μ1k1 û
2
ν1μ1k1

− r

w2

(

1 + r
V ′

r

V

)∣
∣
∣ r=rμ

θ=θν

u2
∞

)

,
(3.1)

αμν cosϕk

( m∑

μ1=1

D(r)
μμ1

û1
νμ1k

)

+ βμν cosϕk

( n∑

ν1=1

D(θ)
νν1
û1

ν1μk

)

− 1
Vμν

sinϕk

( 2l∑

k1=0

D
(ϕ)
kk1
û1

νμk1

)

+ αμν sinϕk

( m∑

μ1=1

D(r)
μμ1

û2
νμ1k

)

+ βμν sinϕk

( n∑

ν1=1

D(θ)
νν1
û2

ν1μk

)

+
1
Vμν

cosϕk

( 2l∑

k1=0

D
(ϕ)
kk1
û2

νμk1

)

+
rV ′

θ

w2

∣
∣
∣ r=rμ

θ=θν

( m∑

μ1=1

D(pr)
μμ1

û3
νμ1k

)

− rV ′
r

w2

∣
∣
∣ r=rμ

θ=θν

( n∑

ν1=1

D(θ)
νν1
û3

ν1μk

)

−
(

u1
∞αμν cosϕk + u2

∞αμν sinϕk + u3
∞
rV ′

θ

w2

∣
∣
∣ r=rμ

θ=θν

)

= 0.

From Eqs. (3.1), we need to determine the vector (û1, û2, û3, p)′, where ûi and p are the vectors of the values of the
corresponding functions in grid nodes.

Remark 1. D(r), D(pr), D(θ), and D(ϕ) are the matrices of numerical differentiation, which are obtained by
differentiating the interpolation formulas (2.4), (2.5), (2.3), and (2.6), respectively. The programs for calculating
these matrices are described in [13].

4. Calculation Results. The calculations were performed for a sphere of a unit radius and a velocity vector
at infinity equal to u = (1, 0, 0), and also for an ellipsoid (a = 1, b = 0.5) with two directions of the velocity vector
at infinity u = (1, 0, 0) and u = (1/

√
3, 1/

√
3, 1/

√
3 ) on grids consisting of 900 (10 × 10 × 9) and 700 (10 × 10 × 7)

nodes. The pressure on the shaded side of the sphere (ellipsoid), which was calculated on a grid consisting of 900
nodes for different values of θ and ϕ = 0, are summarized in Table 1 (Δ is the relative error, as compared with
the calculations on a grid consisting of 700 nodes). The following values were used in these problems: u = (1, 0, 0),
Re = 0.1, n = 10, m = 10, and L = 8.
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TABLE 1
Pressure on the Shaded Side of a Sphere and an Ellipsoid

Node
number

Sphere Ellipsoid

p Δ, % p Δ, %

1 −0.4649 74.10 0.6820 90.31
2 2.0966 0.88 12.3750 0.04
3 6.8262 0.27 24.3430 0.006
4 12.6380 0.41 25.1352 1.10
5 16.9072 1.50 23.4242 2.30
6 16.9072 1.50 23.4242 2.30
7 12.6380 0.41 25.1352 1.10
8 6.8262 0.27 24.3430 0.006
9 2.0966 0.88 12.3750 0.04
10 −0.4649 74.10 0.6820 90.31

The calculations were performed until the value Re = 1 was reached. With increasing Reynolds number, the
calculation accuracy decreases and becomes unacceptable at Re > 1. The number of grid nodes cannot be increased
because of the failure in operation of the standard code for solving nonlinear equations.

The results in Table 1 imply that the solution reaches the highest error at points close to sphere poles. Then
the accuracy increases but again decreases with approaching the x axis.

5. Drag Calculations. The drag coefficient cx was calculated for a sphere of a unit radius [11]. The
projection of the force acting on the sphere onto the x axis is

Fx =
∫

Σ

(p11n1 + p12n2 + p13n3) dσ.

Here pij are the components of the stress tensor:

p11 = −p+ 2μ
∂u1

∂x1
, p12 = μ

(∂u1

∂x2
+
∂u2

∂x1

)

, p13 = μ
(∂u1

∂x3
+
∂u3

∂x1

)

;

in the case of a sphere, n1 = sin θ cosϕ, n2 = sin θ sinϕ, and n3 = cos θ.
The partial derivatives with respect to xi are expressed in terms of the derivatives with respect to r, θ, and

ϕ with the use of formula (1.3). Taking into account that the derivatives with respect to θ and ϕ equal zero on the
sphere surface, we obtain the following relations by virtue of the boundary conditions:

p1jnj = −p sin θ cosϕ+ μ
[

(sin2 θ cos2 ϕ− cos 2θ)
∂u1

∂r
+ sin2 θ sinϕ cosϕ

∂u2

∂r
+ sin θ cos θ cosϕ

∂u3

∂r

]

,

dσ = R2 sin θ dθ dϕ, Fx =

π∫

0

(

sin θ

2π∫

0

p1jnj dϕ
)

dθ =
2π
L

n∑

s=1

cs

2l∑

k=0

fsk.

Here cs are the coefficients of the quadrature formula with respect to θ on the interval [0, π]:

cs =
π

n

(

1 − 2
n−1∑

l=2(2)

cos lψs

l2 − 1

)

, ψs =
(2s− 1)π

2n
, s = 1, 2, . . . , n,

fsk = f(θs, ϕk), θs =
(2s− 1)π

2m
, s = 1, 2, . . . ,m, ϕk =

2πk
L
, k = 0, . . . , 2l,

f = −p sin2 θ cosϕ+
1

Re

[

(sin3 θ cos2 ϕ− cos 2θ sin θ)
(

− 1 +
∂û1

∂r

)

+ sin3 θ sinϕ cosϕ
∂û2

∂r
+ sin2 θ cos θ cosϕ

∂û3

∂r

]

;

l = 2(2) indicate summation from l = 2 with a step equal to two.
Remark 2. The calculations by the above-given formula yield a negative drag coefficient, because the

outward normal to the sphere is transformed by mapping (1.2) into the inward normal. This fact is taken into
account in the code (the sign of f is changed).
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We have still to give formulas for calculating p and the derivatives of the velocity components on the sphere
surface:

p(1) =
4
m

m∑

s=1

csps

1 + xs
, u′(1) =

8
m

m∑

s=1

csus

x2
s − 1

,

cs =
1
2

+
m−1∑

l=1

cos lθs, xs = cos θs, θs =
(2s− 1)π

2m
, s = 1, 2, . . . ,m.

Here ps and us are the values of pressure and velocity at grid nodes with respect to r.
We calculated the values of

cx =
Fx

ρu2∞πR2/2
=

4
L

n∑

s=1

cs

2l∑

k=0

fsk

on a grid consisting of 900 nodes. The values cx = 277.55, 63.73, 23.99, and 13.60 were obtained for Re = 0.02655,
0.12185, 0.36385, and 0.74650, respectively.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00250).
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